MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Molecular Representation: Going Long on Fingerprints

Author(s)
Pattanaik, Lagnajit; Coley, Connor Wilson
Thumbnail
DownloadAccepted version (568.6Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Machine learning for chemistry requires a strategy for representing (featurizing) molecules. In this issue of Chem, Sandfort et al. describe an approach that concatenates 24 fingerprint representations into 71,375-dimensional vectors, which are then used for a variety of supervised learning tasks related to chemical reactivity.
Date issued
2020-05
URI
https://hdl.handle.net/1721.1/131240
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
Chem
Publisher
Elsevier BV
Citation
Pattanaik, Lagnajit and Connor W. Coley. "Molecular Representation: Going Long on Fingerprints." Chem 6, 6 (June 2020): 1204-1207. © 2020 Elsevier Inc
Version: Author's final manuscript
ISSN
2451-9294

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.