Show simple item record

dc.contributor.authorPattanaik, Lagnajit
dc.contributor.authorColey, Connor Wilson
dc.date.accessioned2021-09-03T16:33:12Z
dc.date.available2021-09-03T16:33:12Z
dc.date.issued2020-05
dc.identifier.issn2451-9294
dc.identifier.urihttps://hdl.handle.net/1721.1/131240
dc.description.abstractMachine learning for chemistry requires a strategy for representing (featurizing) molecules. In this issue of Chem, Sandfort et al. describe an approach that concatenates 24 fingerprint representations into 71,375-dimensional vectors, which are then used for a variety of supervised learning tasks related to chemical reactivity.en_US
dc.language.isoen
dc.publisherElsevier BVen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.chempr.2020.05.002en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceElsevieren_US
dc.titleMolecular Representation: Going Long on Fingerprintsen_US
dc.typeArticleen_US
dc.identifier.citationPattanaik, Lagnajit and Connor W. Coley. "Molecular Representation: Going Long on Fingerprints." Chem 6, 6 (June 2020): 1204-1207. © 2020 Elsevier Incen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.relation.journalChemen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2021-09-03T14:55:44Z
dspace.orderedauthorsPattanaik, L; Coley, CWen_US
dspace.date.submission2021-09-03T14:55:48Z
mit.journal.volume6en_US
mit.journal.issue6en_US
mit.licensePUBLISHER_CC
mit.metadata.statusCompleteen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record