Möbius formulas for densities of sets of prime ideals
Author(s)
Kural, Michael; McDonald, Vaughan; Sah, Ashwin
Download13_2020_1458_ReferencePDF.pdf (1.476Mb)
Publisher Policy
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
Abstract
We generalize results of Alladi, Dawsey, and Sweeting and Woo for Chebotarev densities to general densities of sets of primes. We show that if K is a number field and S is any set of prime ideals with natural density $$\delta (S)$$δ(S) within the primes, then $$\begin{aligned} -\lim _{X \rightarrow \infty }\sum _{\begin{array}{c} 2 \le {\text {N}}(\mathfrak {a})\le X\\ \mathfrak {a} \in D(K,S) \end{array}}\frac{\mu (\mathfrak {a})}{{\text {N}}(\mathfrak {a})} = \delta (S), \end{aligned}$$-limX→∞∑2≤N(a)≤Xa∈D(K,S)μ(a)N(a)=δ(S),where $$\mu (\mathfrak {a})$$μ(a) is the generalized Möbius function and D(K, S) is the set of integral ideals $$ \mathfrak {a} \subseteq \mathcal {O}_K$$a⊆OK with unique prime divisor of minimal norm lying in S. Our result can be applied to give formulas for densities of various sets of prime numbers, including those lying in a Sato–Tate interval of a fixed elliptic curve, and those in a Beatty sequence such as $$\lfloor \pi n\rfloor $$⌊πn⌋.
Date issued
2020-04-29Department
Massachusetts Institute of Technology. Department of MathematicsPublisher
Springer International Publishing