Show simple item record

dc.contributor.authorKural, Michael
dc.contributor.authorMcDonald, Vaughan
dc.contributor.authorSah, Ashwin
dc.date.accessioned2021-09-20T17:16:47Z
dc.date.available2021-09-20T17:16:47Z
dc.date.issued2020-04-29
dc.identifier.urihttps://hdl.handle.net/1721.1/131373
dc.description.abstractAbstract We generalize results of Alladi, Dawsey, and Sweeting and Woo for Chebotarev densities to general densities of sets of primes. We show that if K is a number field and S is any set of prime ideals with natural density $$\delta (S)$$δ(S) within the primes, then $$\begin{aligned} -\lim _{X \rightarrow \infty }\sum _{\begin{array}{c} 2 \le {\text {N}}(\mathfrak {a})\le X\\ \mathfrak {a} \in D(K,S) \end{array}}\frac{\mu (\mathfrak {a})}{{\text {N}}(\mathfrak {a})} = \delta (S), \end{aligned}$$-limX→∞∑2≤N(a)≤Xa∈D(K,S)μ(a)N(a)=δ(S),where $$\mu (\mathfrak {a})$$μ(a) is the generalized Möbius function and D(K, S) is the set of integral ideals $$ \mathfrak {a} \subseteq \mathcal {O}_K$$a⊆OK with unique prime divisor of minimal norm lying in S. Our result can be applied to give formulas for densities of various sets of prime numbers, including those lying in a Sato–Tate interval of a fixed elliptic curve, and those in a Beatty sequence such as $$\lfloor \pi n\rfloor $$⌊πn⌋.en_US
dc.publisherSpringer International Publishingen_US
dc.relation.isversionofhttps://doi.org/10.1007/s00013-020-01458-zen_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSpringer International Publishingen_US
dc.titleMöbius formulas for densities of sets of prime idealsen_US
dc.typeArticleen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-09-24T21:09:55Z
dc.language.rfc3066en
dc.rights.holderSpringer Nature Switzerland AG
dspace.embargo.termsY
dspace.date.submission2020-09-24T21:09:55Z
mit.licensePUBLISHER_POLICY
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record