MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Interlacing adjacent levels of $$\beta $$ β –Jacobi corners processes

Author(s)
Gorin, Vadim; Zhang, Lingfu
Thumbnail
Download440_2017_823_ReferencePDF.pdf (693.6Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Metadata
Show full item record
Abstract
Abstract We study the asymptotics of the global fluctuations for the difference between two adjacent levels in the $$\beta $$ β –Jacobi corners process (multilevel and general $$\beta $$ β extension of the classical Jacobi ensemble of random matrices). The limit is identified with the derivative of the 2d Gaussian free field. Our main tools are integral forms for the (Macdonald-type) difference operators originating from the shuffle algebra.
Date issued
2018-01-04
URI
https://hdl.handle.net/1721.1/131442
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Springer Berlin Heidelberg

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.