Show simple item record

dc.contributor.authorGorin, Vadim
dc.contributor.authorZhang, Lingfu
dc.date.accessioned2021-09-20T17:17:05Z
dc.date.available2021-09-20T17:17:05Z
dc.date.issued2018-01-04
dc.identifier.urihttps://hdl.handle.net/1721.1/131442
dc.description.abstractAbstract We study the asymptotics of the global fluctuations for the difference between two adjacent levels in the $$\beta $$ β –Jacobi corners process (multilevel and general $$\beta $$ β extension of the classical Jacobi ensemble of random matrices). The limit is identified with the derivative of the 2d Gaussian free field. Our main tools are integral forms for the (Macdonald-type) difference operators originating from the shuffle algebra.en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttps://doi.org/10.1007/s00440-017-0823-8en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleInterlacing adjacent levels of $$\beta $$ β –Jacobi corners processesen_US
dc.typeArticleen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-09-24T20:57:51Z
dc.language.rfc3066en
dc.rights.holderSpringer-Verlag GmbH Germany, part of Springer Nature
dspace.embargo.termsY
dspace.date.submission2020-09-24T20:57:51Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record