MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A logarithmic epiperimetric inequality for the obstacle problem

Author(s)
Colombo, Maria; Spolaor, Luca; Velichkov, Bozhidar
Thumbnail
Download39_2018_451_ReferencePDF.pdf (313.2Kb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Abstract We study the regularity of the regular and of the singular set of the obstacle problem in any dimension. Our approach is related to the epiperimetric inequality of Weiss (Invent Math 138:23–50, Wei99a), which works at regular points and provides an alternative to the methods previously introduced by Caffarelli (Acta Math 139:155–184, Caf77). In his paper, Weiss uses a contradiction argument for the regular set and he asks the question if such epiperimetric inequality can be proved in a direct way (namely, exhibiting explicit competitors), which would have significant implications on the regularity of the free boundary in dimension d > 2. We answer positively the question of Weiss, proving at regular points the epiperimetric inequality in a direct way, and more significantly we introduce a new tool, which we call logarithmic epiperimetric inequality. It allows to study the regularity of the whole singular set and yields an explicit logarithmic modulus of continuity on the C1 regularity, thus improving previous results of Caffarelli and Monneau and providing a fully alternative method. It is the first instance in the literature (even in the context of minimal surfaces) of an epiperimetric inequality of logarithmic type and the first instance in which the epiperimetric inequality for singular points has a direct proof. Our logarithmic epiperimetric inequality at singular points has a quite general nature and will be applied to provide similar results in different contexts, for instance for the thin obstacle problem.
Date issued
2018-05-11
URI
https://hdl.handle.net/1721.1/131541
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Springer International Publishing

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.