Show simple item record

dc.contributor.authorColombo, Maria
dc.contributor.authorSpolaor, Luca
dc.contributor.authorVelichkov, Bozhidar
dc.date.accessioned2021-09-20T17:20:18Z
dc.date.available2021-09-20T17:20:18Z
dc.date.issued2018-05-11
dc.identifier.urihttps://hdl.handle.net/1721.1/131541
dc.description.abstractAbstract We study the regularity of the regular and of the singular set of the obstacle problem in any dimension. Our approach is related to the epiperimetric inequality of Weiss (Invent Math 138:23–50, Wei99a), which works at regular points and provides an alternative to the methods previously introduced by Caffarelli (Acta Math 139:155–184, Caf77). In his paper, Weiss uses a contradiction argument for the regular set and he asks the question if such epiperimetric inequality can be proved in a direct way (namely, exhibiting explicit competitors), which would have significant implications on the regularity of the free boundary in dimension d > 2. We answer positively the question of Weiss, proving at regular points the epiperimetric inequality in a direct way, and more significantly we introduce a new tool, which we call logarithmic epiperimetric inequality. It allows to study the regularity of the whole singular set and yields an explicit logarithmic modulus of continuity on the C1 regularity, thus improving previous results of Caffarelli and Monneau and providing a fully alternative method. It is the first instance in the literature (even in the context of minimal surfaces) of an epiperimetric inequality of logarithmic type and the first instance in which the epiperimetric inequality for singular points has a direct proof. Our logarithmic epiperimetric inequality at singular points has a quite general nature and will be applied to provide similar results in different contexts, for instance for the thin obstacle problem.en_US
dc.publisherSpringer International Publishingen_US
dc.relation.isversionofhttps://doi.org/10.1007/s00039-018-0451-1en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSpringer International Publishingen_US
dc.titleA logarithmic epiperimetric inequality for the obstacle problemen_US
dc.typeArticleen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-09-24T21:12:16Z
dc.language.rfc3066en
dc.rights.holderSpringer International Publishing AG, part of Springer Nature
dspace.embargo.termsY
dspace.date.submission2020-09-24T21:12:16Z
mit.licensePUBLISHER_POLICY
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record