MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Navigating collinear superspace

Author(s)
Cohen, Timothy; Elor, Gilly; Larkoski, Andrew J; Thaler, Jesse
Thumbnail
Download13130_2020_Article_12483.pdf (660.3Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Abstract We introduce a new set of effective field theory rules for constructing Lagrangians with N$$ \mathcal{N} $$ = 1 supersymmetry in collinear superspace. In the standard superspace treatment, superfields are functions of the coordinates xμθαθ†α⋅$$ \left({x}^{\mu },{\theta}^{\alpha },{\theta}^{\dagger \overset{\cdot }{\alpha }}\right) $$, and supersymmetry preservation is manifest at the Lagrangian level in part due to the inclusion of auxiliary F- and D-term components. By contrast, collinear superspace depends on a smaller set of coordinates (xμ, η, η†), where η is a complex Grassmann number without a spinor index. This provides a formulation of supersymmetric theories that depends exclusively on propagating degrees of freedom, at the expense of obscuring Lorentz invariance and introducing inverse momentum scales. After establishing the general framework, we construct collinear superspace Lagrangians for free chiral matter and non-Abelian gauge fields. For the latter construction, an important ingredient is a superfield representation that is simultaneously chiral, anti-chiral, and real; this novel object encodes residual gauge transformations on the light cone. Additionally, we discuss a fundamental obstruction to constructing inter- acting theories with chiral matter; overcoming these issues is the subject of our companion paper, where we introduce a larger set of superfields to realize the full range of interactions compatible with N$$ \mathcal{N} $$ = 1. Along the way, we provide a novel framing of reparametrization invariance using a spinor decomposition, which provides insight into this important light-cone symmetry.
Date issued
2020-02-25
URI
https://hdl.handle.net/1721.1/131715
Department
Massachusetts Institute of Technology. Center for Theoretical Physics
Publisher
Springer Berlin Heidelberg
Citation
Journal of High Energy Physics. 2020 Feb 25;2020(2):146
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.