Show simple item record

dc.contributor.authorCohen, Timothy
dc.contributor.authorElor, Gilly
dc.contributor.authorLarkoski, Andrew J
dc.contributor.authorThaler, Jesse
dc.date.accessioned2021-09-20T17:29:53Z
dc.date.available2021-09-20T17:29:53Z
dc.date.issued2020-02-25
dc.identifier.urihttps://hdl.handle.net/1721.1/131715
dc.description.abstractAbstract We introduce a new set of effective field theory rules for constructing Lagrangians with N$$ \mathcal{N} $$ = 1 supersymmetry in collinear superspace. In the standard superspace treatment, superfields are functions of the coordinates xμθαθ†α⋅$$ \left({x}^{\mu },{\theta}^{\alpha },{\theta}^{\dagger \overset{\cdot }{\alpha }}\right) $$, and supersymmetry preservation is manifest at the Lagrangian level in part due to the inclusion of auxiliary F- and D-term components. By contrast, collinear superspace depends on a smaller set of coordinates (xμ, η, η†), where η is a complex Grassmann number without a spinor index. This provides a formulation of supersymmetric theories that depends exclusively on propagating degrees of freedom, at the expense of obscuring Lorentz invariance and introducing inverse momentum scales. After establishing the general framework, we construct collinear superspace Lagrangians for free chiral matter and non-Abelian gauge fields. For the latter construction, an important ingredient is a superfield representation that is simultaneously chiral, anti-chiral, and real; this novel object encodes residual gauge transformations on the light cone. Additionally, we discuss a fundamental obstruction to constructing inter- acting theories with chiral matter; overcoming these issues is the subject of our companion paper, where we introduce a larger set of superfields to realize the full range of interactions compatible with N$$ \mathcal{N} $$ = 1. Along the way, we provide a novel framing of reparametrization invariance using a spinor decomposition, which provides insight into this important light-cone symmetry.en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttps://doi.org/10.1007/JHEP02(2020)146en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleNavigating collinear superspaceen_US
dc.typeArticleen_US
dc.identifier.citationJournal of High Energy Physics. 2020 Feb 25;2020(2):146en_US
dc.contributor.departmentMassachusetts Institute of Technology. Center for Theoretical Physics
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-06-26T13:14:59Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2020-06-26T13:14:59Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record