MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modeling of plasticity and fracture behavior of X65 steels: seam weld and seamless pipes

Author(s)
Paredes, Marcelo; Lian, Junhe; Wierzbicki, Tomasz; Cristea, Mihaela E; Münstermann, Sebastian; Darcis, Philippe; ... Show more Show less
Thumbnail
Download10704_2018_303_ReferencePDF.pdf (8.529Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Abstract A non-associated/associated flow rule coupled with an anisotropic/isotropic quadratic yield function is presented to describe the mechanical responses of two distinct X65 pipeline steels. The first as a product of the cold-rolling forming (UOE) process also known as seam weld pipes and the second as a result of high temperature piercing process called seamless tube manufacturing. The experimental settings consist of a wide range of sample types, whose geometric characteristics represent different state of stresses and loading modes. For low to intermediate stress triaxiality levels, flat specimens are extracted at different material orientations along with notched round bar samples for high stress triaxialities. The results indicate that despite the existing differences in plasticity between materials due to anisotropy induced processes, material failure can be characterized by an isotropic weighting function based on the modified Mohr–Coulomb (MMC) criterion. The non-associated flow rule allows for inclusion of strain directional dependence in the definition of equivalent plastic strain by means of scalar anisotropy (Lankford) coefficients and thus keeping the original capabilities of the MMC model.
Date issued
2018-07-27
URI
https://hdl.handle.net/1721.1/131750
Department
Massachusetts Institute of Technology. Impact and Crashworthiness Laboratory; Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Springer Netherlands

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.