MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Vortex-induced vibration of a linearly sprung cylinder with an internal rotational nonlinear energy sink in turbulent flow

Author(s)
Blanchard, Antoine; Bergman, Lawrence A; Vakakis, Alexander F
Thumbnail
Download11071_2019_4775_ReferencePDF.pdf (2.834Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Abstract We computationally investigate flow past a three-dimensional linearly sprung cylinder undergoing vortex-induced vibration (VIV) transverse to the free stream and equipped with an internal dissipative rotational nonlinear energy sink (NES). The rotational NES consists of a line mass allowed to rotate at constant radius about the cylinder axis, with linearly damped rotational motion. We consider a value of the Reynolds number ($$\textit{Re}=10{,}000$$Re=10,000, based on the cylinder diameter and free-stream velocity) at which flow past a linearly sprung cylinder with no NES is three-dimensional and fully turbulent. For this $$\textit{Re}$$Re value, we show that the rotational NES is capable of passively harnessing a substantial amount of kinetic energy from the rectilinear motion of the cylinder, leading to a significant suppression of cylinder oscillation and a nearly twofold reduction in drag. The results presented herein are of practical significance since they demonstrate a novel passive mechanism for VIV suppression and drag reduction in a high-$$\textit{Re}$$Re bluff body flow, and lay down the groundwork for designing nonlinear energy sinks with a view to enhancing the performance of VIV-induced power generation in marine currents.
Date issued
2019-01-25
URI
https://hdl.handle.net/1721.1/131785
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Springer Netherlands

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.