Show simple item record

dc.contributor.authorBlanchard, Antoine
dc.contributor.authorBergman, Lawrence A
dc.contributor.authorVakakis, Alexander F
dc.date.accessioned2021-09-20T17:30:15Z
dc.date.available2021-09-20T17:30:15Z
dc.date.issued2019-01-25
dc.identifier.urihttps://hdl.handle.net/1721.1/131785
dc.description.abstractAbstract We computationally investigate flow past a three-dimensional linearly sprung cylinder undergoing vortex-induced vibration (VIV) transverse to the free stream and equipped with an internal dissipative rotational nonlinear energy sink (NES). The rotational NES consists of a line mass allowed to rotate at constant radius about the cylinder axis, with linearly damped rotational motion. We consider a value of the Reynolds number ($$\textit{Re}=10{,}000$$Re=10,000, based on the cylinder diameter and free-stream velocity) at which flow past a linearly sprung cylinder with no NES is three-dimensional and fully turbulent. For this $$\textit{Re}$$Re value, we show that the rotational NES is capable of passively harnessing a substantial amount of kinetic energy from the rectilinear motion of the cylinder, leading to a significant suppression of cylinder oscillation and a nearly twofold reduction in drag. The results presented herein are of practical significance since they demonstrate a novel passive mechanism for VIV suppression and drag reduction in a high-$$\textit{Re}$$Re bluff body flow, and lay down the groundwork for designing nonlinear energy sinks with a view to enhancing the performance of VIV-induced power generation in marine currents.en_US
dc.publisherSpringer Netherlandsen_US
dc.relation.isversionofhttps://doi.org/10.1007/s11071-019-04775-3en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSpringer Netherlandsen_US
dc.titleVortex-induced vibration of a linearly sprung cylinder with an internal rotational nonlinear energy sink in turbulent flowen_US
dc.typeArticleen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-09-24T20:38:58Z
dc.language.rfc3066en
dc.rights.holderSpringer Nature B.V.
dspace.embargo.termsY
dspace.date.submission2020-09-24T20:38:58Z
mit.licensePUBLISHER_POLICY
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record