MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modified Szegö–Widom Asymptotics for Block Toeplitz Matrices with Zero Modes

Author(s)
Basor, E.; Dubail, J.; Emig, T.; Santachiara, R.
Thumbnail
Download10955_2018_2177_ReferencePDF.pdf (228.0Kb)
Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Abstract The Szegö–Widom theorem provides an expression for the determinant of block Toeplitz matrices in the asymptotic limit of large matrix dimension n. We show that the presence of zero modes, i.e, eigenvalues that vanish as $$\alpha ^n$$ α n , $$|\alpha |<1$$ | α | < 1 , when $$n\rightarrow \infty $$ n → ∞ , requires a modification of the Szegö–Widom theorem. A new asymptotic expression for the determinant of a certain class of block Toeplitz matrices with one pair of zero modes is derived. The result is inspired by one-dimensional topological superconductors, and the relation with the latter systems is discussed.
Date issued
2018-10-17
URI
https://hdl.handle.net/1721.1/131882
Department
MultiScale Materials Science for Energy and Environment, Joint MIT-CNRS Laboratory
Publisher
Springer US

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.