Show simple item record

dc.contributor.authorBasor, E.
dc.contributor.authorDubail, J.
dc.contributor.authorEmig, T.
dc.contributor.authorSantachiara, R.
dc.date.accessioned2021-09-20T17:30:47Z
dc.date.available2021-09-20T17:30:47Z
dc.date.issued2018-10-17
dc.identifier.urihttps://hdl.handle.net/1721.1/131882
dc.description.abstractAbstract The Szegö–Widom theorem provides an expression for the determinant of block Toeplitz matrices in the asymptotic limit of large matrix dimension n. We show that the presence of zero modes, i.e, eigenvalues that vanish as $$\alpha ^n$$ α n , $$|\alpha |<1$$ | α | < 1 , when $$n\rightarrow \infty $$ n → ∞ , requires a modification of the Szegö–Widom theorem. A new asymptotic expression for the determinant of a certain class of block Toeplitz matrices with one pair of zero modes is derived. The result is inspired by one-dimensional topological superconductors, and the relation with the latter systems is discussed.en_US
dc.publisherSpringer USen_US
dc.relation.isversionofhttps://doi.org/10.1007/s10955-018-2177-8en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSpringer USen_US
dc.titleModified Szegö–Widom Asymptotics for Block Toeplitz Matrices with Zero Modesen_US
dc.typeArticleen_US
dc.contributor.departmentMultiScale Materials Science for Energy and Environment, Joint MIT-CNRS Laboratory
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-09-24T21:38:37Z
dc.language.rfc3066en
dc.rights.holderSpringer Science+Business Media, LLC, part of Springer Nature
dspace.embargo.termsY
dspace.date.submission2020-09-24T21:38:37Z
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record