Show simple item record

dc.contributor.authorZhong, Ellen D
dc.contributor.authorBepler, Tristan
dc.contributor.authorBerger, Bonnie
dc.contributor.authorDavis, Joseph H
dc.date.accessioned2021-10-27T19:51:46Z
dc.date.available2021-10-27T19:51:46Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/1721.1/133247
dc.description.abstract© 2021, The Author(s), under exclusive licence to Springer Nature America, Inc. Cryo-electron microscopy (cryo-EM) single-particle analysis has proven powerful in determining the structures of rigid macromolecules. However, many imaged protein complexes exhibit conformational and compositional heterogeneity that poses a major challenge to existing three-dimensional reconstruction methods. Here, we present cryoDRGN, an algorithm that leverages the representation power of deep neural networks to directly reconstruct continuous distributions of 3D density maps and map per-particle heterogeneity of single-particle cryo-EM datasets. Using cryoDRGN, we uncovered residual heterogeneity in high-resolution datasets of the 80S ribosome and the RAG complex, revealed a new structural state of the assembling 50S ribosome, and visualized large-scale continuous motions of a spliceosome complex. CryoDRGN contains interactive tools to visualize a dataset’s distribution of per-particle variability, generate density maps for exploratory analysis, extract particle subsets for use with other tools and generate trajectories to visualize molecular motions. CryoDRGN is open-source software freely available at http://cryodrgn.csail.mit.edu.en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1038/S41592-020-01049-4en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcePMCen_US
dc.titleCryoDRGN: reconstruction of heterogeneous cryo-EM structures using neural networksen_US
dc.typeArticleen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computational and Systems Biology Program
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biology
dc.relation.journalNature Methodsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2021-08-13T13:34:53Z
dspace.orderedauthorsZhong, ED; Bepler, T; Berger, B; Davis, JHen_US
dspace.date.submission2021-08-13T13:34:56Z
mit.journal.volume18en_US
mit.journal.issue2en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record