An in vivo selection-derived d-peptide for engineering erythrocyte-binding antigens that promote immune tolerance
Author(s)
Loftis, Alexander R; Zhang, Genwei; Backlund, Coralie; Quartararo, Anthony J; Pishesha, Novalia; Hanna, Cameron C; Schissel, Carly K; Garafola, Daniel; Loas, Andrei; Collier, R John; Ploegh, Hidde; Irvine, Darrell J; Pentelute, Bradley L; ... Show more Show less
DownloadPublished version (1.165Mb)
Publisher Policy
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
<jats:p>When displayed on erythrocytes, peptides and proteins can drive antigen-specific immune tolerance. Here, we investigated a straightforward approach based on erythrocyte binding to promote antigen-specific tolerance to both peptides and proteins. We first identified a robust erythrocyte-binding ligand. A pool of one million fully <jats:sc>d</jats:sc>-chiral peptides was injected into mice, blood cells were isolated, and ligands enriched on these cells were identified using nano-liquid chromatography–tandem mass spectrometry. One round of selection yielded a murine erythrocyte-binding ligand with an 80 nM apparent dissociation constant, <jats:italic>K</jats:italic><jats:sub>d</jats:sub>. We modified an 83-kDa bacterial protein and a peptide antigen derived from ovalbumin (OVA) with the identified erythrocyte-binding ligand. An administration of the engineered bacterial protein led to decreased protein-specific antibodies in mice. Similarly, mice given the engineered OVA-derived peptide had decreased inflammatory anti-OVA CD8<jats:sup>+</jats:sup> T cell responses. These findings suggest that our tolerance-induction strategy is applicable to both peptide and protein antigens and that our in vivo selection strategy can be used for de novo discovery of robust erythrocyte-binding ligands.</jats:p>
Date issued
2021-08Department
Massachusetts Institute of Technology. Department of Chemistry; Koch Institute for Integrative Cancer Research at MIT; Massachusetts Institute of Technology. Department of Biological Engineering; Ragon Institute of MGH, MIT and Harvard; Massachusetts Institute of Technology. Department of Materials Science and Engineering; Howard Hughes Medical Institute; Massachusetts Institute of Technology. Center for Environmental Health SciencesJournal
Proceedings of the National Academy of Sciences
Publisher
National Academy of Sciences
ISSN
1091-6490
0027-8424