MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Resonances for Open Quantum Maps and a Fractal Uncertainty Principle

Author(s)
Dyatlov, Semyon; Jin, Long
Thumbnail
DownloadAccepted version (4.890Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 2017, Springer-Verlag Berlin Heidelberg. We study eigenvalues of quantum open baker’s maps with trapped sets given by linear arithmetic Cantor sets of dimensions δ∈ (0 , 1). We show that the size of the spectral gap is strictly greater than the standard bound max(0,12-δ) for all values of δ, which is the first result of this kind. The size of the improvement is determined from a fractal uncertainty principle and can be computed for any given Cantor set. We next show a fractal Weyl upper bound for the number of eigenvalues in annuli, with exponent which depends on the inner radius of the annulus.
Date issued
2017
URI
https://hdl.handle.net/1721.1/133911
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Communications in Mathematical Physics
Publisher
Springer Nature

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.