dc.contributor.author | Dyatlov, Semyon | |
dc.contributor.author | Jin, Long | |
dc.date.accessioned | 2021-10-27T19:57:11Z | |
dc.date.available | 2021-10-27T19:57:11Z | |
dc.date.issued | 2017 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/133911 | |
dc.description.abstract | © 2017, Springer-Verlag Berlin Heidelberg. We study eigenvalues of quantum open baker’s maps with trapped sets given by linear arithmetic Cantor sets of dimensions δ∈ (0 , 1). We show that the size of the spectral gap is strictly greater than the standard bound max(0,12-δ) for all values of δ, which is the first result of this kind. The size of the improvement is determined from a fractal uncertainty principle and can be computed for any given Cantor set. We next show a fractal Weyl upper bound for the number of eigenvalues in annuli, with exponent which depends on the inner radius of the annulus. | |
dc.language.iso | en | |
dc.publisher | Springer Nature | |
dc.relation.isversionof | 10.1007/S00220-017-2892-Z | |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.source | Springer | |
dc.title | Resonances for Open Quantum Maps and a Fractal Uncertainty Principle | |
dc.type | Article | |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | |
dc.relation.journal | Communications in Mathematical Physics | |
dc.eprint.version | Author's final manuscript | |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
eprint.status | http://purl.org/eprint/status/PeerReviewed | |
dc.date.updated | 2021-04-29T14:38:09Z | |
dspace.orderedauthors | Dyatlov, S; Jin, L | |
dspace.date.submission | 2021-04-29T14:38:11Z | |
mit.journal.volume | 354 | |
mit.journal.issue | 1 | |
mit.license | OPEN_ACCESS_POLICY | |
mit.metadata.status | Authority Work and Publication Information Needed | |