Show simple item record

dc.contributor.authorDyatlov, Semyon
dc.contributor.authorJin, Long
dc.date.accessioned2021-10-27T19:57:11Z
dc.date.available2021-10-27T19:57:11Z
dc.date.issued2017
dc.identifier.urihttps://hdl.handle.net/1721.1/133911
dc.description.abstract© 2017, Springer-Verlag Berlin Heidelberg. We study eigenvalues of quantum open baker’s maps with trapped sets given by linear arithmetic Cantor sets of dimensions δ∈ (0 , 1). We show that the size of the spectral gap is strictly greater than the standard bound max(0,12-δ) for all values of δ, which is the first result of this kind. The size of the improvement is determined from a fractal uncertainty principle and can be computed for any given Cantor set. We next show a fractal Weyl upper bound for the number of eigenvalues in annuli, with exponent which depends on the inner radius of the annulus.
dc.language.isoen
dc.publisherSpringer Nature
dc.relation.isversionof10.1007/S00220-017-2892-Z
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.sourceSpringer
dc.titleResonances for Open Quantum Maps and a Fractal Uncertainty Principle
dc.typeArticle
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.relation.journalCommunications in Mathematical Physics
dc.eprint.versionAuthor's final manuscript
dc.type.urihttp://purl.org/eprint/type/JournalArticle
eprint.statushttp://purl.org/eprint/status/PeerReviewed
dc.date.updated2021-04-29T14:38:09Z
dspace.orderedauthorsDyatlov, S; Jin, L
dspace.date.submission2021-04-29T14:38:11Z
mit.journal.volume354
mit.journal.issue1
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record