MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Spin q–Whittaker polynomials

Author(s)
Borodin, Alexei; Wheeler, Michael
Thumbnail
DownloadSubmitted version (526.8Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
© 2020 Elsevier Inc. We introduce and study a one-parameter generalization of the q–Whittaker symmetric functions. This is a family of multivariate symmetric polynomials, whose construction may be viewed as an application of the procedure of fusion from integrable lattice models to a vertex model interpretation of a one-parameter generalization of Hall–Littlewood polynomials from [3,6,7]. We prove branching and Pieri rules, standard and dual (skew) Cauchy summation identities, and an integral representation for the new polynomials.
Date issued
2021
URI
https://hdl.handle.net/1721.1/134181
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Advances in Mathematics
Publisher
Elsevier BV

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.