Show simple item record

dc.contributor.authorBorodin, Alexei
dc.contributor.authorWheeler, Michael
dc.date.accessioned2021-10-27T19:58:32Z
dc.date.available2021-10-27T19:58:32Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/1721.1/134181
dc.description.abstract© 2020 Elsevier Inc. We introduce and study a one-parameter generalization of the q–Whittaker symmetric functions. This is a family of multivariate symmetric polynomials, whose construction may be viewed as an application of the procedure of fusion from integrable lattice models to a vertex model interpretation of a one-parameter generalization of Hall–Littlewood polynomials from [3,6,7]. We prove branching and Pieri rules, standard and dual (skew) Cauchy summation identities, and an integral representation for the new polynomials.
dc.language.isoen
dc.publisherElsevier BV
dc.relation.isversionof10.1016/j.aim.2020.107449
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs License
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcearXiv
dc.titleSpin q–Whittaker polynomials
dc.typeArticle
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.relation.journalAdvances in Mathematics
dc.eprint.versionOriginal manuscript
dc.type.urihttp://purl.org/eprint/type/JournalArticle
eprint.statushttp://purl.org/eprint/status/NonPeerReviewed
dc.date.updated2021-05-17T18:42:58Z
dspace.orderedauthorsBorodin, A; Wheeler, M
dspace.date.submission2021-05-17T18:42:59Z
mit.journal.volume376
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record