dc.contributor.author | Borodin, Alexei | |
dc.contributor.author | Wheeler, Michael | |
dc.date.accessioned | 2021-10-27T19:58:32Z | |
dc.date.available | 2021-10-27T19:58:32Z | |
dc.date.issued | 2021 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/134181 | |
dc.description.abstract | © 2020 Elsevier Inc. We introduce and study a one-parameter generalization of the q–Whittaker symmetric functions. This is a family of multivariate symmetric polynomials, whose construction may be viewed as an application of the procedure of fusion from integrable lattice models to a vertex model interpretation of a one-parameter generalization of Hall–Littlewood polynomials from [3,6,7]. We prove branching and Pieri rules, standard and dual (skew) Cauchy summation identities, and an integral representation for the new polynomials. | |
dc.language.iso | en | |
dc.publisher | Elsevier BV | |
dc.relation.isversionof | 10.1016/j.aim.2020.107449 | |
dc.rights | Creative Commons Attribution-NonCommercial-NoDerivs License | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | arXiv | |
dc.title | Spin q–Whittaker polynomials | |
dc.type | Article | |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | |
dc.relation.journal | Advances in Mathematics | |
dc.eprint.version | Original manuscript | |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
eprint.status | http://purl.org/eprint/status/NonPeerReviewed | |
dc.date.updated | 2021-05-17T18:42:58Z | |
dspace.orderedauthors | Borodin, A; Wheeler, M | |
dspace.date.submission | 2021-05-17T18:42:59Z | |
mit.journal.volume | 376 | |
mit.license | PUBLISHER_CC | |
mit.metadata.status | Authority Work and Publication Information Needed | |