MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Truncated random measures

Author(s)
Campbell, Trevor; Huggins, Jonathan H; How, Jonathan P; Broderick, Tamara
Thumbnail
DownloadAccepted version (1013.Kb)
Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 2019 ISI/BS. Completely random measures (CRMs) and their normalizations are a rich source of Bayesian nonparametric priors. Examples include the beta, gamma, and Dirichlet processes. In this paper, we detail two major classes of sequential CRM representations—series representations and superposition representations—within which we organize both novel and existing sequential representations that can be used for simulation and posterior inference. These two classes and their constituent representations subsume existing ones that have previously been developed in an ad hoc manner for specific processes. Since a complete infinite-dimensional CRM cannot be used explicitly for computation, sequential representations are often truncated for tractability. We provide truncation error analyses for each type of sequential representation, as well as their normalized versions, thereby generalizing and improving upon existing truncation error bounds in the literature. We analyze the computational complexity of the sequential representations, which in conjunction with our error bounds allows us to directly compare representations and discuss their relative efficiency. We include numerous applications of our theoretical results to commonly-used (normalized) CRMs, demonstrating that our results enable a straightforward representation and analysis of CRMs that has not previously been available in a Bayesian nonparametric context.
Date issued
2019
URI
https://hdl.handle.net/1721.1/134549
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Laboratory for Information and Decision Systems
Journal
Bernoulli
Publisher
Bernoulli Society for Mathematical Statistics and Probability

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.