MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An Application of Collapsing Levels to the Representation Theory of Affine Vertex Algebras

Author(s)
Adamović, Dražen; Kac, Victor G; Möseneder Frajria, Pierluigi; Papi, Paolo; Perše, Ozren
Thumbnail
DownloadAccepted version (389.5Kb)
Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 2018 The Author(s). Published by Oxford University Press. All rights reserved. We discover a large class of simple affine vertex algebras Vk (g), associated to basic Lie superalgebras g at non-admissible collapsing levels k, having exactly one irreducible g-locally finite module in the category O. In the case when g is a Lie algebra, we prove a complete reducibility result for Vk(g)-modules at an arbitrary collapsing level. We also determine the generators of the maximal ideal in the universal affine vertex algebra Vk (g) at certain negative integer levels. Considering some conformal embeddings in the simple affine vertex algebras V-1/2 (Cn) and V-4(E7), we surprisingly obtain the realization of non-simple affine vertex algebras of types B and D having exactly one nontrivial ideal.
Date issued
2018
URI
https://hdl.handle.net/1721.1/135082
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
International Mathematics Research Notices
Publisher
Oxford University Press (OUP)

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.