MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the high–low method for NLS on the hyperbolic space

Author(s)
Staffilani, Gigliola; Yu, Xueying
Thumbnail
DownloadSubmitted version (897.4Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 2020 Author(s). In this paper, we first prove that the cubic, defocusing nonlinear Schrödinger equation on the two dimensional hyperbolic space with radial initial data in Hs(H2) is globally well-posed and scatters when s > 3/4. Then, we extend the result to nonlinearities of order p > 3. The result is proved by extending the high-low method of Bourgain in the hyperbolic setting and by using a Morawetz type estimate proved by Staffilani and Ionescu.
Date issued
2020
URI
https://hdl.handle.net/1721.1/135430
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Journal of Mathematical Physics
Publisher
AIP Publishing

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.