Show simple item record

dc.contributor.authorDai, Zheng
dc.contributor.authorHuisman, Brooke D
dc.contributor.authorZeng, Haoyang
dc.contributor.authorCarter, Brandon
dc.contributor.authorJain, Siddhartha
dc.contributor.authorBirnbaum, Michael E
dc.contributor.authorGifford, David K
dc.date.accessioned2021-10-27T20:23:48Z
dc.date.available2021-10-27T20:23:48Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/1721.1/135517
dc.description.abstract<jats:title>Abstract</jats:title> <jats:sec> <jats:title>Summary</jats:title> <jats:p>T cells play a critical role in cellular immune responses to pathogens and cancer and can be activated and expanded by Major Histocompatibility Complex (MHC)-presented antigens contained in peptide vaccines. We present a machine learning method to optimize the presentation of peptides by class II MHCs by modifying their anchor residues. Our method first learns a model of peptide affinity for a class II MHC using an ensemble of deep residual networks, and then uses the model to propose anchor residue changes to improve peptide affinity. We use a high throughput yeast display assay to show that anchor residue optimization improves peptide binding.</jats:p> </jats:sec> <jats:sec> <jats:title>Supplementary information</jats:title> <jats:p>Supplementary data are available at Bioinformatics online.</jats:p> </jats:sec>
dc.language.isoen
dc.publisherOxford University Press (OUP)
dc.relation.isversionof10.1093/BIOINFORMATICS/BTAB131
dc.rightsCreative Commons Attribution 4.0 International license
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceOxford University Press
dc.titleMachine learning optimization of peptides for presentation by class II MHCs
dc.typeArticle
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineering
dc.relation.journalBioinformatics
dc.eprint.versionFinal published version
dc.type.urihttp://purl.org/eprint/type/JournalArticle
eprint.statushttp://purl.org/eprint/status/PeerReviewed
dc.date.updated2021-08-25T14:29:42Z
dspace.orderedauthorsDai, Z; Huisman, BD; Zeng, H; Carter, B; Jain, S; Birnbaum, ME; Gifford, DK
dspace.date.submission2021-08-25T14:29:44Z
mit.journal.volume37
mit.journal.issue19
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record