dc.contributor.author | Dai, Zheng | |
dc.contributor.author | Huisman, Brooke D | |
dc.contributor.author | Zeng, Haoyang | |
dc.contributor.author | Carter, Brandon | |
dc.contributor.author | Jain, Siddhartha | |
dc.contributor.author | Birnbaum, Michael E | |
dc.contributor.author | Gifford, David K | |
dc.date.accessioned | 2021-10-27T20:23:48Z | |
dc.date.available | 2021-10-27T20:23:48Z | |
dc.date.issued | 2021 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/135517 | |
dc.description.abstract | <jats:title>Abstract</jats:title>
<jats:sec>
<jats:title>Summary</jats:title>
<jats:p>T cells play a critical role in cellular immune responses to pathogens and cancer and can be activated and expanded by Major Histocompatibility Complex (MHC)-presented antigens contained in peptide vaccines. We present a machine learning method to optimize the presentation of peptides by class II MHCs by modifying their anchor residues. Our method first learns a model of peptide affinity for a class II MHC using an ensemble of deep residual networks, and then uses the model to propose anchor residue changes to improve peptide affinity. We use a high throughput yeast display assay to show that anchor residue optimization improves peptide binding.</jats:p>
</jats:sec>
<jats:sec>
<jats:title>Supplementary information</jats:title>
<jats:p>Supplementary data are available at Bioinformatics online.</jats:p>
</jats:sec> | |
dc.language.iso | en | |
dc.publisher | Oxford University Press (OUP) | |
dc.relation.isversionof | 10.1093/BIOINFORMATICS/BTAB131 | |
dc.rights | Creative Commons Attribution 4.0 International license | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.source | Oxford University Press | |
dc.title | Machine learning optimization of peptides for presentation by class II MHCs | |
dc.type | Article | |
dc.contributor.department | Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory | |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | |
dc.contributor.department | Massachusetts Institute of Technology. Department of Biological Engineering | |
dc.relation.journal | Bioinformatics | |
dc.eprint.version | Final published version | |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
eprint.status | http://purl.org/eprint/status/PeerReviewed | |
dc.date.updated | 2021-08-25T14:29:42Z | |
dspace.orderedauthors | Dai, Z; Huisman, BD; Zeng, H; Carter, B; Jain, S; Birnbaum, ME; Gifford, DK | |
dspace.date.submission | 2021-08-25T14:29:44Z | |
mit.journal.volume | 37 | |
mit.journal.issue | 19 | |
mit.license | PUBLISHER_CC | |
mit.metadata.status | Authority Work and Publication Information Needed | |