MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cell-specific transcriptional control of mitochondrial metabolism by TIF1γ drives erythropoiesis

Author(s)
Rossmann, Marlies P; Hoi, Karen; Chan, Victoria; Abraham, Brian J; Yang, Song; Mullahoo, James; Papanastasiou, Malvina; Wang, Ying; Elia, Ilaria; Perlin, Julie R; Hagedorn, Elliott J; Hetzel, Sara; Weigert, Raha; Vyas, Sejal; Nag, Partha P; Sullivan, Lucas B; Warren, Curtis R; Dorjsuren, Bilguujin; Greig, Eugenia Custo; Adatto, Isaac; Cowan, Chad A; Schreiber, Stuart L; Young, Richard A; Meissner, Alexander; Haigis, Marcia C; Hekimi, Siegfried; Carr, Steven A; Zon, Leonard I; ... Show more Show less
Thumbnail
DownloadAccepted version (1.432Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Transcription and metabolism both influence cell function, but dedicated transcriptional control of metabolic pathways that regulate cell fate has rarely been defined. We discovered, using a chemical suppressor screen, that inhibition of the pyrimidine biosynthesis enzyme dihydroorotate dehydrogenase (DHODH) rescues erythroid differentiation in bloodless zebrafish moonshine (mon) mutant embryos defective for transcriptional intermediary factor 1 gamma (tif1γ). This rescue depends on the functional link of DHODH to mitochondrial respiration. The transcription elongation factor TIF1γ directly controls coenzyme Q (CoQ) synthesis gene expression. Upon tif1γ loss, CoQ levels are reduced, and a high succinate/α-ketoglutarate ratio leads to increased histone methylation. A CoQ analog rescues mon's bloodless phenotype. These results demonstrate that mitochondrial metabolism is a key output of a lineage transcription factor that drives cell fate decisions in the early blood lineage.
Date issued
2021
URI
https://hdl.handle.net/1721.1/135623
Department
Whitehead Institute for Biomedical Research; Massachusetts Institute of Technology. Department of Biology
Journal
Science
Publisher
American Association for the Advancement of Science (AAAS)

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.