Show simple item record

dc.contributor.authorRossmann, Marlies P
dc.contributor.authorHoi, Karen
dc.contributor.authorChan, Victoria
dc.contributor.authorAbraham, Brian J
dc.contributor.authorYang, Song
dc.contributor.authorMullahoo, James
dc.contributor.authorPapanastasiou, Malvina
dc.contributor.authorWang, Ying
dc.contributor.authorElia, Ilaria
dc.contributor.authorPerlin, Julie R
dc.contributor.authorHagedorn, Elliott J
dc.contributor.authorHetzel, Sara
dc.contributor.authorWeigert, Raha
dc.contributor.authorVyas, Sejal
dc.contributor.authorNag, Partha P
dc.contributor.authorSullivan, Lucas B
dc.contributor.authorWarren, Curtis R
dc.contributor.authorDorjsuren, Bilguujin
dc.contributor.authorGreig, Eugenia Custo
dc.contributor.authorAdatto, Isaac
dc.contributor.authorCowan, Chad A
dc.contributor.authorSchreiber, Stuart L
dc.contributor.authorYoung, Richard A
dc.contributor.authorMeissner, Alexander
dc.contributor.authorHaigis, Marcia C
dc.contributor.authorHekimi, Siegfried
dc.contributor.authorCarr, Steven A
dc.contributor.authorZon, Leonard I
dc.date.accessioned2021-10-27T20:24:18Z
dc.date.available2021-10-27T20:24:18Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/1721.1/135623
dc.description.abstractTranscription and metabolism both influence cell function, but dedicated transcriptional control of metabolic pathways that regulate cell fate has rarely been defined. We discovered, using a chemical suppressor screen, that inhibition of the pyrimidine biosynthesis enzyme dihydroorotate dehydrogenase (DHODH) rescues erythroid differentiation in bloodless zebrafish moonshine (mon) mutant embryos defective for transcriptional intermediary factor 1 gamma (tif1γ). This rescue depends on the functional link of DHODH to mitochondrial respiration. The transcription elongation factor TIF1γ directly controls coenzyme Q (CoQ) synthesis gene expression. Upon tif1γ loss, CoQ levels are reduced, and a high succinate/α-ketoglutarate ratio leads to increased histone methylation. A CoQ analog rescues mon's bloodless phenotype. These results demonstrate that mitochondrial metabolism is a key output of a lineage transcription factor that drives cell fate decisions in the early blood lineage.
dc.language.isoen
dc.publisherAmerican Association for the Advancement of Science (AAAS)
dc.relation.isversionof10.1126/science.aaz2740
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourcePMC
dc.titleCell-specific transcriptional control of mitochondrial metabolism by TIF1γ drives erythropoiesis
dc.typeArticle
dc.contributor.departmentWhitehead Institute for Biomedical Research
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biology
dc.relation.journalScience
dc.eprint.versionAuthor's final manuscript
dc.type.urihttp://purl.org/eprint/type/JournalArticle
eprint.statushttp://purl.org/eprint/status/PeerReviewed
dc.date.updated2021-08-04T18:55:57Z
dspace.orderedauthorsRossmann, MP; Hoi, K; Chan, V; Abraham, BJ; Yang, S; Mullahoo, J; Papanastasiou, M; Wang, Y; Elia, I; Perlin, JR; Hagedorn, EJ; Hetzel, S; Weigert, R; Vyas, S; Nag, PP; Sullivan, LB; Warren, CR; Dorjsuren, B; Greig, EC; Adatto, I; Cowan, CA; Schreiber, SL; Young, RA; Meissner, A; Haigis, MC; Hekimi, S; Carr, SA; Zon, LI
dspace.date.submission2021-08-04T18:56:00Z
mit.journal.volume372
mit.journal.issue6543
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record