MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Machine learning for deep elastic strain engineering of semiconductor electronic band structure and effective mass

Author(s)
Tsymbalov, Evgenii; Shi, Zhe; Dao, Ming; Suresh, Subra; Li, Ju; Shapeev, Alexander; ... Show more Show less
Thumbnail
DownloadPublished version (1.994Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
<jats:title>Abstract</jats:title><jats:p>The controlled introduction of elastic strains is an appealing strategy for modulating the physical properties of semiconductor materials. With the recent discovery of large elastic deformation in nanoscale specimens as diverse as silicon and diamond, employing this strategy to improve device performance necessitates first-principles computations of the fundamental electronic band structure and target figures-of-merit, through the design of an optimal straining pathway. Such simulations, however, call for approaches that combine deep learning algorithms and physics of deformation with band structure calculations to custom-design electronic and optical properties. Motivated by this challenge, we present here details of a machine learning framework involving convolutional neural networks to represent the topology and curvature of band structures in <jats:bold>k</jats:bold>-space. These calculations enable us to identify ways in which the physical properties can be altered through “deep” elastic strain engineering up to a large fraction of the ideal strain. Algorithms capable of active learning and informed by the underlying physics were presented here for predicting the bandgap and the band structure. By training a surrogate model with ab initio computational data, our method can identify the most efficient strain energy pathway to realize physical property changes. The power of this method is further demonstrated with results from the prediction of strain states that influence the effective electron mass. We illustrate the applications of the method with specific results for diamonds, although the general deep learning technique presented here is potentially useful for optimizing the physical properties of a wide variety of semiconductor materials.</jats:p>
Date issued
2021
URI
https://hdl.handle.net/1721.1/135630
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering; Massachusetts Institute of Technology. Department of Nuclear Science and Engineering
Journal
npj Computational Materials
Publisher
Springer Science and Business Media LLC

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.