MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A note on Grothendieck’s standard conjectures of type ����⁺ and ���� in positive characteristic

Author(s)
Tabuada, Gonçalo
Thumbnail
DownloadPublished version (302.8Kb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
<p>Making use of topological periodic cyclic homology, we extend Grothendieck’s standard conjectures of type <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper C Superscript plus"> <mml:semantics> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">C</mml:mi> </mml:mrow> <mml:mo>+</mml:mo> </mml:msup> <mml:annotation encoding="application/x-tex">\mathrm {C}^+</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper D"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">D</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathrm {D}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (with respect to crystalline cohomology theory) from smooth projective schemes to smooth proper dg categories in the sense of Kontsevich. As a first application, we prove Grothendieck’s original conjectures in the new cases of linear sections of determinantal varieties. As a second application, we prove Grothendieck’s (generalized) conjectures in the new cases of “low-dimensional” orbifolds. Finally, as a third application, we establish a far-reaching noncommutative generalization of Berthelot’s cohomological interpretation of the classical zeta function and of Grothendieck’s conditional approach to “half” of the Riemann hypothesis. Along the way, following Scholze, we prove that the topological periodic cyclic homology of a smooth proper scheme <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper X"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding="application/x-tex">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> agrees with the crystalline cohomology theory of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper X"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding="application/x-tex">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (after inverting the characteristic of the base field).</p>
Date issued
2019
URI
https://hdl.handle.net/1721.1/135649
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Proceedings of the American Mathematical Society
Publisher
American Mathematical Society (AMS)

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.