Show simple item record

dc.contributor.authorTabuada, Gonçalo
dc.date.accessioned2021-10-27T20:24:27Z
dc.date.available2021-10-27T20:24:27Z
dc.date.issued2019
dc.identifier.urihttps://hdl.handle.net/1721.1/135649
dc.description.abstract<p>Making use of topological periodic cyclic homology, we extend Grothendieck’s standard conjectures of type <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper C Superscript plus"> <mml:semantics> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">C</mml:mi> </mml:mrow> <mml:mo>+</mml:mo> </mml:msup> <mml:annotation encoding="application/x-tex">\mathrm {C}^+</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper D"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">D</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathrm {D}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (with respect to crystalline cohomology theory) from smooth projective schemes to smooth proper dg categories in the sense of Kontsevich. As a first application, we prove Grothendieck’s original conjectures in the new cases of linear sections of determinantal varieties. As a second application, we prove Grothendieck’s (generalized) conjectures in the new cases of “low-dimensional” orbifolds. Finally, as a third application, we establish a far-reaching noncommutative generalization of Berthelot’s cohomological interpretation of the classical zeta function and of Grothendieck’s conditional approach to “half” of the Riemann hypothesis. Along the way, following Scholze, we prove that the topological periodic cyclic homology of a smooth proper scheme <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper X"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding="application/x-tex">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> agrees with the crystalline cohomology theory of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper X"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding="application/x-tex">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (after inverting the characteristic of the base field).</p>
dc.language.isoen
dc.publisherAmerican Mathematical Society (AMS)
dc.relation.isversionof10.1090/PROC/14768
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
dc.sourceAmerican Mathematical Society
dc.titleA note on Grothendieck’s standard conjectures of type ����⁺ and ���� in positive characteristic
dc.typeArticle
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.relation.journalProceedings of the American Mathematical Society
dc.eprint.versionFinal published version
dc.type.urihttp://purl.org/eprint/type/JournalArticle
eprint.statushttp://purl.org/eprint/status/PeerReviewed
dc.date.updated2021-06-01T16:14:08Z
dspace.orderedauthorsTabuada, G
dspace.date.submission2021-06-01T16:14:09Z
mit.journal.volume147
mit.journal.issue12
mit.licensePUBLISHER_POLICY
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record