dc.contributor.author | Tabuada, Gonçalo | |
dc.date.accessioned | 2021-10-27T20:24:27Z | |
dc.date.available | 2021-10-27T20:24:27Z | |
dc.date.issued | 2019 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/135649 | |
dc.description.abstract | <p>Making use of topological periodic cyclic homology, we extend Grothendieck’s standard conjectures of type <inline-formula content-type="math/mathml">
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper C Superscript plus">
<mml:semantics>
<mml:msup>
<mml:mrow class="MJX-TeXAtom-ORD">
<mml:mi mathvariant="normal">C</mml:mi>
</mml:mrow>
<mml:mo>+</mml:mo>
</mml:msup>
<mml:annotation encoding="application/x-tex">\mathrm {C}^+</mml:annotation>
</mml:semantics>
</mml:math>
</inline-formula> and <inline-formula content-type="math/mathml">
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper D">
<mml:semantics>
<mml:mrow class="MJX-TeXAtom-ORD">
<mml:mi mathvariant="normal">D</mml:mi>
</mml:mrow>
<mml:annotation encoding="application/x-tex">\mathrm {D}</mml:annotation>
</mml:semantics>
</mml:math>
</inline-formula> (with respect to crystalline cohomology theory) from smooth projective schemes to smooth proper dg categories in the sense of Kontsevich. As a first application, we prove Grothendieck’s original conjectures in the new cases of linear sections of determinantal varieties. As a second application, we prove Grothendieck’s (generalized) conjectures in the new cases of “low-dimensional” orbifolds. Finally, as a third application, we establish a far-reaching noncommutative generalization of Berthelot’s cohomological interpretation of the classical zeta function and of Grothendieck’s conditional approach to “half” of the Riemann hypothesis. Along the way, following Scholze, we prove that the topological periodic cyclic homology of a smooth proper scheme <inline-formula content-type="math/mathml">
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper X">
<mml:semantics>
<mml:mi>X</mml:mi>
<mml:annotation encoding="application/x-tex">X</mml:annotation>
</mml:semantics>
</mml:math>
</inline-formula> agrees with the crystalline cohomology theory of <inline-formula content-type="math/mathml">
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper X">
<mml:semantics>
<mml:mi>X</mml:mi>
<mml:annotation encoding="application/x-tex">X</mml:annotation>
</mml:semantics>
</mml:math>
</inline-formula> (after inverting the characteristic of the base field).</p> | |
dc.language.iso | en | |
dc.publisher | American Mathematical Society (AMS) | |
dc.relation.isversionof | 10.1090/PROC/14768 | |
dc.rights | Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. | |
dc.source | American Mathematical Society | |
dc.title | A note on Grothendieck’s standard conjectures of type ����⁺ and ���� in positive characteristic | |
dc.type | Article | |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | |
dc.relation.journal | Proceedings of the American Mathematical Society | |
dc.eprint.version | Final published version | |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
eprint.status | http://purl.org/eprint/status/PeerReviewed | |
dc.date.updated | 2021-06-01T16:14:08Z | |
dspace.orderedauthors | Tabuada, G | |
dspace.date.submission | 2021-06-01T16:14:09Z | |
mit.journal.volume | 147 | |
mit.journal.issue | 12 | |
mit.license | PUBLISHER_POLICY | |
mit.metadata.status | Authority Work and Publication Information Needed | |