MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A hidden Markov model reliably characterizes ketamine-induced spectral dynamics in macaque local field potentials and human electroencephalograms

Author(s)
Garwood, Indie C; Chakravarty, Sourish; Donoghue, Jacob; Mahnke, Meredith; Kahali, Pegah; Chamadia, Shubham; Akeju, Oluwaseun; Miller, Earl K; Brown, Emery Neal; ... Show more Show less
Thumbnail
DownloadPublished version (3.563Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
<jats:p>Ketamine is an NMDA receptor antagonist commonly used to maintain general anesthesia. At anesthetic doses, ketamine causes high power gamma (25-50 Hz) oscillations alternating with slow-delta (0.1-4 Hz) oscillations. These dynamics are readily observed in local field potentials (LFPs) of non-human primates (NHPs) and electroencephalogram (EEG) recordings from human subjects. However, a detailed statistical analysis of these dynamics has not been reported. We characterize ketamine’s neural dynamics using a hidden Markov model (HMM). The HMM observations are sequences of spectral power in seven canonical frequency bands between 0 to 50 Hz, where power is averaged within each band and scaled between 0 and 1. We model the observations as realizations of multivariate beta probability distributions that depend on a discrete-valued latent state process whose state transitions obey Markov dynamics. Using an expectation-maximization algorithm, we fit this beta-HMM to LFP recordings from 2 NHPs, and separately, to EEG recordings from 9 human subjects who received anesthetic doses of ketamine. Our beta-HMM framework provides a useful tool for experimental data analysis. Together, the estimated beta-HMM parameters and optimal state trajectory revealed an alternating pattern of states characterized primarily by gamma and slow-delta activities. The mean duration of the gamma activity was 2.2s([1.7,2.8]s) and 1.2s([0.9,1.5]s) for the two NHPs, and 2.5s([1.7,3.6]s) for the human subjects. The mean duration of the slow-delta activity was 1.6s([1.2,2.0]s) and 1.0s([0.8,1.2]s) for the two NHPs, and 1.8s([1.3,2.4]s) for the human subjects. Our characterizations of the alternating gamma slow-delta activities revealed five sub-states that show regular sequential transitions. These quantitative insights can inform the development of rhythm-generating neuronal circuit models that give mechanistic insights into this phenomenon and how ketamine produces altered states of arousal.</jats:p>
Date issued
2021-08
URI
https://hdl.handle.net/1721.1/135689
Department
Harvard University--MIT Division of Health Sciences and Technology; Picower Institute for Learning and Memory; Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences
Journal
PLOS Computational Biology
Publisher
Public Library of Science (PLoS)

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.