MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Locality Preserving Discriminative Canonical Variate Analysis for Fault Diagnosis

Author(s)
Lu, Qiugang; Jiang, Benben; Gopaluni, R Bhushan; Loewen, Philip D; Braatz, Richard D
Thumbnail
DownloadAccepted version (2.158Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
© 2018 Elsevier Ltd This paper proposes a locality preserving discriminative canonical variate analysis (LP-DCVA) scheme for fault diagnosis. The LP-DCVA method provides a set of optimal projection vectors that simultaneously maximizes the within-class mutual canonical correlations, minimizes the between-class mutual canonical correlations, and preserves the local structures present in the data. This method inherits the strength of canonical variate analysis (CVA) in handling high-dimensional data with serial correlations and the advantages of Fisher discriminant analysis (FDA) in pattern classification. Moreover, the incorporation of locality preserving projection (LPP) in this method makes it suitable for dealing with nonlinearities in the form of local manifolds in the data. The solution to the proposed approach is formulated as a generalized eigenvalue problem. The effectiveness of the proposed approach for fault classification is verified by the Tennessee Eastman process. Simulation results show that the LP-DCVA method outperforms the FDA, dynamic FDA (DFDA), CVA-FDA, and localized DFDA (L-DFDA) approaches in fault diagnosis.
Date issued
2018
URI
https://hdl.handle.net/1721.1/135826
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
Computers and Chemical Engineering
Publisher
Elsevier BV

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.