Show simple item record

dc.contributor.authorLu, Qiugang
dc.contributor.authorJiang, Benben
dc.contributor.authorGopaluni, R Bhushan
dc.contributor.authorLoewen, Philip D
dc.contributor.authorBraatz, Richard D
dc.date.accessioned2021-10-27T20:29:30Z
dc.date.available2021-10-27T20:29:30Z
dc.date.issued2018
dc.identifier.urihttps://hdl.handle.net/1721.1/135826
dc.description.abstract© 2018 Elsevier Ltd This paper proposes a locality preserving discriminative canonical variate analysis (LP-DCVA) scheme for fault diagnosis. The LP-DCVA method provides a set of optimal projection vectors that simultaneously maximizes the within-class mutual canonical correlations, minimizes the between-class mutual canonical correlations, and preserves the local structures present in the data. This method inherits the strength of canonical variate analysis (CVA) in handling high-dimensional data with serial correlations and the advantages of Fisher discriminant analysis (FDA) in pattern classification. Moreover, the incorporation of locality preserving projection (LPP) in this method makes it suitable for dealing with nonlinearities in the form of local manifolds in the data. The solution to the proposed approach is formulated as a generalized eigenvalue problem. The effectiveness of the proposed approach for fault classification is verified by the Tennessee Eastman process. Simulation results show that the LP-DCVA method outperforms the FDA, dynamic FDA (DFDA), CVA-FDA, and localized DFDA (L-DFDA) approaches in fault diagnosis.
dc.language.isoen
dc.publisherElsevier BV
dc.relation.isversionof10.1016/J.COMPCHEMENG.2018.06.017
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs License
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceother univ website
dc.titleLocality Preserving Discriminative Canonical Variate Analysis for Fault Diagnosis
dc.typeArticle
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineering
dc.relation.journalComputers and Chemical Engineering
dc.eprint.versionAuthor's final manuscript
dc.type.urihttp://purl.org/eprint/type/JournalArticle
eprint.statushttp://purl.org/eprint/status/PeerReviewed
dc.date.updated2019-08-14T18:33:35Z
dspace.orderedauthorsLu, Q; Jiang, B; Gopaluni, RB; Loewen, PD; Braatz, RD
dspace.date.submission2019-08-14T18:33:36Z
mit.journal.volume117
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record