MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Single-layer graphene membranes by crack-free transfer for gas mixture separation

Author(s)
Huang, Shiqi; Dakhchoune, Mostapha; Luo, Wen; Oveisi, Emad; He, Guangwei; Rezaei, Mojtaba; Zhao, Jing; Alexander, Duncan TL; Züttel, Andreas; Strano, Michael S; Agrawal, Kumar Varoon; ... Show more Show less
Thumbnail
DownloadPublished version (2.611Mb)
Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
© 2018 The Author(s). The single-layer graphene film, when incorporated with molecular-sized pores, is predicted to be the ultimate membrane. However, the major bottlenecks have been the crack-free transfer of large-area graphene on a porous support, and the incorporation of molecular-sized nanopores. Herein, we report a nanoporous-carbon-assisted transfer technique, yielding a relatively large area (1 mm2), crack-free, suspended graphene film. Gas-sieving (H2/CH4 selectivity up to 25) is observed from the intrinsic defects generated during the chemical-vapor deposition of graphene. Despite the ultralow porosity of 0.025%, an attractive H2 permeance (up to 4.1 × 10-7 mol m-2 s-1 Pa-1) is observed. Finally, we report ozone functionalization-based etching and pore-modification chemistry to etch hydrogen-selective pores, and to shrink the pore-size, improving H2 permeance (up to 300%) and H2/CH4 selectivity (up to 150%). Overall, the scalable transfer, etching, and functionalization methods developed herein are expected to bring nanoporous graphene membranes a step closer to reality.
Date issued
2018
URI
https://hdl.handle.net/1721.1/135843
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
Nature Communications
Publisher
Springer Science and Business Media LLC

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.