Show simple item record

dc.contributor.authorHuang, Shiqi
dc.contributor.authorDakhchoune, Mostapha
dc.contributor.authorLuo, Wen
dc.contributor.authorOveisi, Emad
dc.contributor.authorHe, Guangwei
dc.contributor.authorRezaei, Mojtaba
dc.contributor.authorZhao, Jing
dc.contributor.authorAlexander, Duncan TL
dc.contributor.authorZüttel, Andreas
dc.contributor.authorStrano, Michael S
dc.contributor.authorAgrawal, Kumar Varoon
dc.date.accessioned2021-10-27T20:29:35Z
dc.date.available2021-10-27T20:29:35Z
dc.date.issued2018
dc.identifier.urihttps://hdl.handle.net/1721.1/135843
dc.description.abstract© 2018 The Author(s). The single-layer graphene film, when incorporated with molecular-sized pores, is predicted to be the ultimate membrane. However, the major bottlenecks have been the crack-free transfer of large-area graphene on a porous support, and the incorporation of molecular-sized nanopores. Herein, we report a nanoporous-carbon-assisted transfer technique, yielding a relatively large area (1 mm2), crack-free, suspended graphene film. Gas-sieving (H2/CH4 selectivity up to 25) is observed from the intrinsic defects generated during the chemical-vapor deposition of graphene. Despite the ultralow porosity of 0.025%, an attractive H2 permeance (up to 4.1 × 10-7 mol m-2 s-1 Pa-1) is observed. Finally, we report ozone functionalization-based etching and pore-modification chemistry to etch hydrogen-selective pores, and to shrink the pore-size, improving H2 permeance (up to 300%) and H2/CH4 selectivity (up to 150%). Overall, the scalable transfer, etching, and functionalization methods developed herein are expected to bring nanoporous graphene membranes a step closer to reality.
dc.language.isoen
dc.publisherSpringer Science and Business Media LLC
dc.relation.isversionof10.1038/S41467-018-04904-3
dc.rightsCreative Commons Attribution 4.0 International license
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceNature
dc.titleSingle-layer graphene membranes by crack-free transfer for gas mixture separation
dc.typeArticle
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineering
dc.relation.journalNature Communications
dc.eprint.versionFinal published version
dc.type.urihttp://purl.org/eprint/type/JournalArticle
eprint.statushttp://purl.org/eprint/status/PeerReviewed
dc.date.updated2019-09-13T13:03:24Z
dspace.orderedauthorsHuang, S; Dakhchoune, M; Luo, W; Oveisi, E; He, G; Rezaei, M; Zhao, J; Alexander, DTL; Züttel, A; Strano, MS; Agrawal, KV
dspace.date.submission2019-09-13T13:03:27Z
mit.journal.volume9
mit.journal.issue1
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record