MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Quantum groups and quantum cohomology

Author(s)
Maulik, D; Okounkov, A
Thumbnail
DownloadSubmitted version (1.726Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© Astérisque 408, SMF 2019 — In this paper, we study the classical and quantum equivariant cohomology of Nakajima quiver varieties for a general quiver Q. Using a geometric R-matrix formalism, we construct a Hopf algebra YQ, the Yangian of Q, acting on the cohomology of these varieties, and show several results about their basic structure theory. We prove a formula for quantum multiplication by divisors in terms of this Yangian action. The quantum connection can be identified with the trigonometric Casimir connection for YQ; equivalently, the divisor operators correspond to certain elements of Baxter subalgebras of YQ. A key role is played by geometric shift operators which can be identified with the quantum KZ difference connection. In the second part, we give an extended example of the general theory for moduli spaces of sheaves on C2, framed at infinity. Here, the Yangian action is analyzed explicitly in terms of a free field realization; the corresponding R-matrix is closely related to the reflection operator in Liouville field theory. We show that divisor operators generate the quantum ring, which is identified with the full Baxter subalgebras. As a corollary of our construction, we obtain an action of the W-algebra Wgl(r) on the equivariant cohomology of rank r moduli spaces, which implies certain conjectures of Alday, Gaiotto, and Tachikawa.
Date issued
2019-01-01
URI
https://hdl.handle.net/1721.1/136200
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Asterisque
Publisher
Societe Mathematique de France

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.