Show simple item record

dc.contributor.authorMaulik, D
dc.contributor.authorOkounkov, A
dc.date.accessioned2021-10-27T20:34:14Z
dc.date.available2021-10-27T20:34:14Z
dc.date.issued2019-01-01
dc.identifier.urihttps://hdl.handle.net/1721.1/136200
dc.description.abstract© Astérisque 408, SMF 2019 — In this paper, we study the classical and quantum equivariant cohomology of Nakajima quiver varieties for a general quiver Q. Using a geometric R-matrix formalism, we construct a Hopf algebra YQ, the Yangian of Q, acting on the cohomology of these varieties, and show several results about their basic structure theory. We prove a formula for quantum multiplication by divisors in terms of this Yangian action. The quantum connection can be identified with the trigonometric Casimir connection for YQ; equivalently, the divisor operators correspond to certain elements of Baxter subalgebras of YQ. A key role is played by geometric shift operators which can be identified with the quantum KZ difference connection. In the second part, we give an extended example of the general theory for moduli spaces of sheaves on C2, framed at infinity. Here, the Yangian action is analyzed explicitly in terms of a free field realization; the corresponding R-matrix is closely related to the reflection operator in Liouville field theory. We show that divisor operators generate the quantum ring, which is identified with the full Baxter subalgebras. As a corollary of our construction, we obtain an action of the W-algebra Wgl(r) on the equivariant cohomology of rank r moduli spaces, which implies certain conjectures of Alday, Gaiotto, and Tachikawa.
dc.language.isoen
dc.publisherSociete Mathematique de France
dc.relation.isversionof10.24033/ast.1074
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.sourcearXiv
dc.titleQuantum groups and quantum cohomology
dc.typeArticle
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.relation.journalAsterisque
dc.eprint.versionOriginal manuscript
dc.type.urihttp://purl.org/eprint/type/JournalArticle
eprint.statushttp://purl.org/eprint/status/NonPeerReviewed
dc.date.updated2021-05-24T17:31:18Z
dspace.orderedauthorsMaulik, D; Okounkov, A
dspace.date.submission2021-05-24T17:31:20Z
mit.journal.volume408
mit.journal.issue408
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record