Notice
This is not the latest version of this item. The latest version can be found at:https://dspace.mit.edu/handle/1721.1/136206.2
A BUCKLING FLEXURE-BASED FORCE-LIMITING MECHANISM
Author(s)
Slocum, Jonathan; Kamrin, Kenneth; Slocum, Alexander
DownloadPublished version (386.6Kb)
Publisher Policy
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
Copyright © 2019 by ASME. A force-limiting buckling flexure has been created which can be used in a wide range of applications where excessive force from an implement can cause harm or damage. The buckling flexure is monolithic, contains no electronics, and can be manufactured using a single shot in an injection molding machine, making it cost effective. In this paper, the design of the flexure is applied to a force-limiting toothbrush as a design study to show its application in a real-world technology. An overview of the buckling flexure is presented, and a structural model is presented to predict when the flexure will elastically buckle. Flexures of different geometries were tested and buckled. The data show that the model can predict buckling of the flexure with an error of 20.84%. A finite element model was also performed which predicts buckling of the flexure within an error of 25.35%. Furthermore, a preliminary model is presented which enables the design of the buckling beam's displacement, such that the total breakaway deformation can be maximized, making sensing the sudden deformation easier to detect. As part of the application of the buckling flexure, an ergonomic, injection moldable toothbrush was created with the flexure built into the neck of the brush. When the user applies too much force while brushing, the flexure gives way and alerts the user when they have applied too much force; when the user lets off the force, the brush snaps back to its original shape. This design methodology is generalized and can be utilized in other force limited applications where an injection-moldable, pre-set force, and purely mechanical breakaway device is desired.
Date issued
2019Journal
Journal of Mechanisms and Robotics
Publisher
ASME International