Show simple item record

dc.contributor.authorHuber, Lukas
dc.contributor.authorBillard, Aude
dc.contributor.authorSlotine, Jean-Jacques
dc.date.accessioned2021-10-27T20:34:16Z
dc.date.available2021-10-27T20:34:16Z
dc.date.issued2019
dc.identifier.urihttps://hdl.handle.net/1721.1/136208
dc.description.abstract© 2016 IEEE. This letter presents a closed-form approach to obstacle avoidance for multiple moving convex and star-shaped concave obstacles. The method takes inspiration in harmonic-potential fields. It inherits the convergence properties of harmonic potentials. We prove impenetrability of the obstacles hull and asymptotic stability at a final goal location, using contraction theory. We validate the approach in a simulated co-worker industrial environment, with one KUKA arm engaged in a pick and place grocery task, avoiding in real-time humans moving in its vicinity and in simulation to drive wheel-chair robot in the presence of moving obstacles.
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.isversionof10.1109/LRA.2019.2893676
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.sourceOther repository
dc.titleAvoidance of Convex and Concave Obstacles With Convergence Ensured Through Contraction
dc.typeArticle
dc.contributor.departmentMassachusetts Institute of Technology. Nonlinear Systems Laboratory
dc.relation.journalIEEE Robotics and Automation Letters
dc.eprint.versionAuthor's final manuscript
dc.type.urihttp://purl.org/eprint/type/JournalArticle
eprint.statushttp://purl.org/eprint/status/PeerReviewed
dc.date.updated2020-08-07T15:38:27Z
dspace.orderedauthorsHuber, L; Billard, A; Slotine, J-J
dspace.date.submission2020-08-07T15:38:29Z
mit.journal.volume4
mit.journal.issue2
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record