Show simple item record

dc.contributor.authorPoggio, Tomaso A
dc.contributor.authorLiao, Qianli
dc.contributor.authorBanburski, Andrzej
dc.date.accessioned2022-01-12T20:53:18Z
dc.date.available2021-10-27T20:34:47Z
dc.date.available2022-01-12T20:53:18Z
dc.date.issued2020
dc.identifier.urihttps://hdl.handle.net/1721.1/136301.2
dc.description.abstract© 2020, The Author(s). Overparametrized deep networks predict well, despite the lack of an explicit complexity control during training, such as an explicit regularization term. For exponential-type loss functions, we solve this puzzle by showing an effective regularization effect of gradient descent in terms of the normalized weights that are relevant for classification.en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/S41467-020-14663-9en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleComplexity control by gradient descent in deep networksen_US
dc.typeArticleen_US
dc.contributor.departmentCenter for Brains, Minds, and Machinesen_US
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2021-03-24T13:05:49Z
dspace.orderedauthorsPoggio, T; Liao, Q; Banburski, Aen_US
dspace.date.submission2021-03-24T13:05:50Z
mit.journal.volume11en_US
mit.journal.issue1en_US
mit.licensePUBLISHER_CC
mit.metadata.statusPublication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version