MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fault detection for uncertain LPV systems using probabilistic set-membership parity relation

Author(s)
Wan, Yiming; Puig, Vicenç; Ocampo-Martinez, Carlos; Wang, Ye; Harinath, Eranda; Braatz, Richard D; ... Show more Show less
Thumbnail
DownloadAccepted version (1.123Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
© 2019 This paper considers fault detection of uncertain linear parameter varying systems that have polynomial dependence on parametric uncertainties. A conventional set-membership (SM) approach is able to ensure zero false alarm rate (FAR) by using conservative threshold sets, but usually results in a high missed detection rate (MDR) due to equally treating all uncertainty realizations without distinguishing between high and low probability of occurrence. To address this limitation, a probabilistic SM parity relation approach is proposed to exploit probabilistic information on the parametric uncertainties, which results in a reduced MDR by admitting an acceptable FAR. The parity relation is first polynomially parameterized with respect to uncertain parameters. Then, Gaussian mixtures are adopted to efficiently compute uncertainty propagation from stochastic uncertainties to the residual distribution. To achieve an acceptable FAR, a non-convex confidence set of residuals – represented by a union of ellipsoids – is determined for the consistency test. The effectiveness of the proposed approach is illustrated using a continuous stirred tank reactor example including performance comparisons with a deterministic zonotope-based method.
Date issued
2020
URI
https://hdl.handle.net/1721.1/136310
Department
Massachusetts Institute of Technology. Department of Chemistry
Journal
Journal of Process Control
Publisher
Elsevier BV

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.