MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Genus zero Gopakumar–Vafa type invariants for Calabi–Yau 4-folds

Author(s)
Cao, Yalong; Maulik, Davesh; Toda, Yukinobu
Thumbnail
DownloadSubmitted version (481.6Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
© 2018 Elsevier Inc. In analogy with the Gopakumar–Vafa conjecture on CY 3-folds, Klemm and Pandharipande defined GV type invariants on Calabi–Yau 4-folds using Gromov–Witten theory and conjectured their integrality. In this paper, we propose a sheaf-theoretic interpretation of their genus zero invariants using Donaldson–Thomas theory on CY 4-folds. More specifically, we conjecture genus zero GV type invariants are DT4 invariants for one-dimensional stable sheaves on CY 4-folds. Some examples are computed for both compact and non-compact CY 4-folds to support our conjectures. We also propose an equivariant version of the conjectures for local curves and verify them in certain cases.
Date issued
2018
URI
https://hdl.handle.net/1721.1/136350
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Advances in Mathematics
Publisher
Elsevier BV

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.