Show simple item record

dc.contributor.authorCao, Yalong
dc.contributor.authorMaulik, Davesh
dc.contributor.authorToda, Yukinobu
dc.date.accessioned2021-10-27T20:34:59Z
dc.date.available2021-10-27T20:34:59Z
dc.date.issued2018
dc.identifier.urihttps://hdl.handle.net/1721.1/136350
dc.description.abstract© 2018 Elsevier Inc. In analogy with the Gopakumar–Vafa conjecture on CY 3-folds, Klemm and Pandharipande defined GV type invariants on Calabi–Yau 4-folds using Gromov–Witten theory and conjectured their integrality. In this paper, we propose a sheaf-theoretic interpretation of their genus zero invariants using Donaldson–Thomas theory on CY 4-folds. More specifically, we conjecture genus zero GV type invariants are DT4 invariants for one-dimensional stable sheaves on CY 4-folds. Some examples are computed for both compact and non-compact CY 4-folds to support our conjectures. We also propose an equivariant version of the conjectures for local curves and verify them in certain cases.
dc.language.isoen
dc.publisherElsevier BV
dc.relation.isversionof10.1016/J.AIM.2018.08.013
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs License
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcearXiv
dc.titleGenus zero Gopakumar–Vafa type invariants for Calabi–Yau 4-folds
dc.typeArticle
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.relation.journalAdvances in Mathematics
dc.eprint.versionOriginal manuscript
dc.type.urihttp://purl.org/eprint/type/JournalArticle
eprint.statushttp://purl.org/eprint/status/NonPeerReviewed
dc.date.updated2019-11-14T19:40:21Z
dspace.orderedauthorsCao, Y; Maulik, D; Toda, Y
dspace.date.submission2019-11-14T19:40:24Z
mit.journal.volume338
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record