MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On Falconer’s distance set problem in the plane

Author(s)
Guth, Larry; Iosevich, Alex; Ou, Yumeng; Wang, Hong
Thumbnail
DownloadSubmitted version (688.7Kb)
Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 2019, Springer-Verlag GmbH Germany, part of Springer Nature. If E⊂ R2 is a compact set of Hausdorff dimension greater than 5 / 4, we prove that there is a point x∈ E so that the set of distances { | x- y| } y∈E has positive Lebesgue measure.
Date issued
2020
URI
https://hdl.handle.net/1721.1/136444
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Inventiones Mathematicae
Publisher
Springer Science and Business Media LLC

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.