dc.contributor.author | Guth, Larry | |
dc.contributor.author | Iosevich, Alex | |
dc.contributor.author | Ou, Yumeng | |
dc.contributor.author | Wang, Hong | |
dc.date.accessioned | 2021-10-27T20:35:24Z | |
dc.date.available | 2021-10-27T20:35:24Z | |
dc.date.issued | 2020 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/136444 | |
dc.description.abstract | © 2019, Springer-Verlag GmbH Germany, part of Springer Nature. If E⊂ R2 is a compact set of Hausdorff dimension greater than 5 / 4, we prove that there is a point x∈ E so that the set of distances { | x- y| } y∈E has positive Lebesgue measure. | |
dc.language.iso | en | |
dc.publisher | Springer Science and Business Media LLC | |
dc.relation.isversionof | 10.1007/s00222-019-00917-x | |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.source | arXiv | |
dc.title | On Falconer’s distance set problem in the plane | |
dc.type | Article | |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | |
dc.relation.journal | Inventiones Mathematicae | |
dc.eprint.version | Original manuscript | |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
eprint.status | http://purl.org/eprint/status/NonPeerReviewed | |
dc.date.updated | 2019-11-13T16:46:33Z | |
dspace.orderedauthors | Guth, L; Iosevich, A; Ou, Y; Wang, H | |
dspace.date.submission | 2019-11-13T16:46:38Z | |
mit.journal.volume | 219 | |
mit.journal.issue | 3 | |
mit.metadata.status | Authority Work and Publication Information Needed | |