Show simple item record

dc.contributor.authorGuth, Larry
dc.contributor.authorIosevich, Alex
dc.contributor.authorOu, Yumeng
dc.contributor.authorWang, Hong
dc.date.accessioned2021-10-27T20:35:24Z
dc.date.available2021-10-27T20:35:24Z
dc.date.issued2020
dc.identifier.urihttps://hdl.handle.net/1721.1/136444
dc.description.abstract© 2019, Springer-Verlag GmbH Germany, part of Springer Nature. If E⊂ R2 is a compact set of Hausdorff dimension greater than 5 / 4, we prove that there is a point x∈ E so that the set of distances { | x- y| } y∈E has positive Lebesgue measure.
dc.language.isoen
dc.publisherSpringer Science and Business Media LLC
dc.relation.isversionof10.1007/s00222-019-00917-x
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.sourcearXiv
dc.titleOn Falconer’s distance set problem in the plane
dc.typeArticle
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.relation.journalInventiones Mathematicae
dc.eprint.versionOriginal manuscript
dc.type.urihttp://purl.org/eprint/type/JournalArticle
eprint.statushttp://purl.org/eprint/status/NonPeerReviewed
dc.date.updated2019-11-13T16:46:33Z
dspace.orderedauthorsGuth, L; Iosevich, A; Ou, Y; Wang, H
dspace.date.submission2019-11-13T16:46:38Z
mit.journal.volume219
mit.journal.issue3
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record