MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Performance analysis of adaptive dynamic tube mpc

Author(s)
How, Jonathan P.; Lopez, Brett; Lusk, Parker; Morozov, Savva
Thumbnail
DownloadAccepted version (4.242Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
© 2021, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved. Model predictive control (MPC) is an effective method for control of constrained systems but is susceptible to the external disturbances and modeling error often encountered in real-world applications. To address these issues, techniques such as Tube MPC (TMPC) utilize an ancillary offline-generated robust controller to ensure that the system remains within an invariant set, referred to as a tube, around an online-generated trajectory. However, TMPC is unable to modify its tube and ancillary controller in response to changing state-dependent uncertainty, often resulting in overly-conservative solutions. Dynamic Tube MPC (DTMPC) addresses these problems by simultaneously optimizing the desired trajectory and tube geometry online. Building upon this framework, Adaptive DTMPC (ADTMPC) produces better model approximations by reducing model uncertainty, resulting in more accurate control policies. This work presents an experimental analysis and performance evaluation of TMPC, DTMPC, and ADTMPC for an uncertain nonlinear system. In particular, DTMPC is shown to outperform TMPC because it is able to dynamically adjust to changing environments, limiting aggressive control and conservative behavior to only the cases when the constraints and uncertainty require it. Applied to a pendulum testbed, this enables DTMPC to use up to 30% less control effort while achieving up to 80% higher speeds. This performance is further improved by ADTMPC, which reduces the feedback control effort by up to another 35%, while delivering up to 34% better trajectory tracking. This analysis establishes that the DTMPC and ADTMPC frameworks yield significantly more effective robust control policies for systems with changing uncertainty, goals, and operating conditions.
Date issued
2021-01-04
URI
https://hdl.handle.net/1721.1/136723
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Journal
AIAA Scitech 2021 Forum
Citation
How, Jonathan P., Lopez, Brett, Lusk, Parker and Morozov, Savva. 2021. "Performance analysis of adaptive dynamic tube mpc." AIAA Scitech 2021 Forum, 1 PartF.
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.