MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modular flow of excited states

Author(s)
Lashkari, Nima; Liu, Hong; Rajagopal, Srivatsan
Thumbnail
Download13130_2021_Article_16749.pdf (1.089Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Abstract We develop new techniques for studying the modular and the relative modular flows of general excited states. We show that the class of states obtained by acting on the vacuum (or any cyclic and separating state) with invertible operators from the algebra of a region is dense in the Hilbert space. This enables us to express the modular and the relative modular operators, as well as the relative entropies of generic excited states in terms of the vacuum modular operator and the operator that creates the state. In particular, the modular and the relative modular flows of any state can be expanded in terms of the modular flow of operators in vacuum. We illustrate the formalism with simple examples including states close to the vacuum, and coherent and squeezed states in generalized free field theory.
Date issued
2021-09-24
URI
https://hdl.handle.net/1721.1/136738
Department
Massachusetts Institute of Technology. Center for Theoretical Physics
Publisher
Springer Berlin Heidelberg
Citation
Journal of High Energy Physics. 2021 Sep 24;2021(9):166
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.