Show simple item record

dc.contributor.authorLashkari, Nima
dc.contributor.authorLiu, Hong
dc.contributor.authorRajagopal, Srivatsan
dc.date.accessioned2021-10-29T17:16:02Z
dc.date.available2021-10-29T17:16:02Z
dc.date.issued2021-09-24
dc.identifier.urihttps://hdl.handle.net/1721.1/136738
dc.description.abstractAbstract We develop new techniques for studying the modular and the relative modular flows of general excited states. We show that the class of states obtained by acting on the vacuum (or any cyclic and separating state) with invertible operators from the algebra of a region is dense in the Hilbert space. This enables us to express the modular and the relative modular operators, as well as the relative entropies of generic excited states in terms of the vacuum modular operator and the operator that creates the state. In particular, the modular and the relative modular flows of any state can be expanded in terms of the modular flow of operators in vacuum. We illustrate the formalism with simple examples including states close to the vacuum, and coherent and squeezed states in generalized free field theory.en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttps://doi.org/10.1007/JHEP09(2021)166en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleModular flow of excited statesen_US
dc.typeArticleen_US
dc.identifier.citationJournal of High Energy Physics. 2021 Sep 24;2021(9):166en_US
dc.contributor.departmentMassachusetts Institute of Technology. Center for Theoretical Physics
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2021-09-26T03:11:52Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2021-09-26T03:11:52Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record