MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Integrable triples in semisimple Lie algebras

Author(s)
De Sole, Alberto; Jibladze, Mamuka; Kac, Victor G.; Valeri, Daniele
Thumbnail
Download11005_2021_Article_1456.pdf (845.3Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Abstract We classify all integrable triples in simple Lie algebras, up to equivalence. The importance of this problem stems from the fact that for each such equivalence class one can construct the corresponding integrable hierarchy of bi-Hamiltonian PDE. The simplest integrable triple (f, 0, e) in $${\mathfrak {sl}}_2$$ sl 2 corresponds to the KdV hierarchy, and the triple $$(f,0,e_\theta )$$ ( f , 0 , e θ ) , where f is the sum of negative simple root vectors and $$e_\theta $$ e θ is the highest root vector of a simple Lie algebra, corresponds to the Drinfeld–Sokolov hierarchy.
Date issued
2021-09-09
URI
https://hdl.handle.net/1721.1/136755
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Springer Netherlands
Citation
Letters in Mathematical Physics. 2021 Sep 09;111(5):117
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.