Show simple item record

dc.contributor.authorDe Sole, Alberto
dc.contributor.authorJibladze, Mamuka
dc.contributor.authorKac, Victor G.
dc.contributor.authorValeri, Daniele
dc.date.accessioned2021-10-29T18:51:46Z
dc.date.available2021-10-29T18:51:46Z
dc.date.issued2021-09-09
dc.identifier.urihttps://hdl.handle.net/1721.1/136755
dc.description.abstractAbstract We classify all integrable triples in simple Lie algebras, up to equivalence. The importance of this problem stems from the fact that for each such equivalence class one can construct the corresponding integrable hierarchy of bi-Hamiltonian PDE. The simplest integrable triple (f, 0, e) in $${\mathfrak {sl}}_2$$ sl 2 corresponds to the KdV hierarchy, and the triple $$(f,0,e_\theta )$$ ( f , 0 , e θ ) , where f is the sum of negative simple root vectors and $$e_\theta $$ e θ is the highest root vector of a simple Lie algebra, corresponds to the Drinfeld–Sokolov hierarchy.en_US
dc.publisherSpringer Netherlandsen_US
dc.relation.isversionofhttps://doi.org/10.1007/s11005-021-01456-4en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Netherlandsen_US
dc.titleIntegrable triples in semisimple Lie algebrasen_US
dc.typeArticleen_US
dc.identifier.citationLetters in Mathematical Physics. 2021 Sep 09;111(5):117en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2021-09-12T03:08:23Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2021-09-12T03:08:23Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record